Solutions
Math 220
HW # 4
October 8, 2018

Exercise 1. Prove that if x is an odd integer, then 9x + 5 is even.

Proof. Suppose that x is odd, then x = 2n + 1 for some $n \in \mathbb{Z}$. Then

$$9x + 5 = 9(2n + 1) + 5 = 18n + 9 + 5 = 2(9n + 7).$$

Since $9n + 7 \in \mathbb{Z}$, 9x + 5 is even.

Exercise 2. Prove that if a and c are odd integers, then ab + bc is even for every integer b.

Proof. Suppose that a and c are odd so that there are integers $k, l \in \mathbb{Z}$ such that a = 2k + 1 and c = 2l + 1. Then

$$ab + bc = (2k + 1)b + b(2l + 1) = 2kb + b + 2lb + b = 2kb + 2lb + 2b = 2(kb + lb + b).$$

So since $kb + lb + b \in \mathbb{Z}$, ab + bc is even.

Exercise 3. Prove that if $n \in \mathbb{Z}$, then $n^2 - 3n + 9$ is odd.

Proof. We prove this in cases:

n is even Since n is even, n=2k for some $k\in\mathbb{Z}$. Then

$$n^2 - 3n + 9 = 4k^2 - 6k + 9 = 2(2k^2 - 3k + 4) + 1$$

and therefore $n^2 - 3n + 9$ is odd.

<u>n is odd</u> If n is odd, then n = 2k + 1 for some integer k. So

$$n^2 - 3n + 9 = (4k^2 + 4k + 1) - (6k + 3) + 9 = 4k^2 - 2k + 7 = 2(2k^2 - k + 3) + 1$$

verifying that $n^2 - 3n + 9$ is odd.

Exercise 4. Let $x \in \mathbb{Z}$. Prove that if 7x + 5 is odd, then x is even.

Proof. We prove this by contrapositive. Suppose that x is odd so that x = 2k + 1 for some integer k. Then

$$7x + 5 = 7(2k + 1) + 5 = 14k + 12 = 2(7k + 6)$$

showing that 7x + 5 is even. The desired conclusion follows from contrapositive.

Exercise 5. Let $n \in \mathbb{Z}$. Prove that $(n+1)^2 - 1$ is even if and only if n is even. *Proof.*

(\iff) Suppose that n is even. Then n = 2k for an some integer k. Then $(n+1)^2 - 1 = (2k+1)^2 - 1 = 4k^2 + 4k + 1 - 1 = 4k^2 + 4k = 2(2k^2 + 2k)$ which is even.

 (\Longrightarrow) We prove this direction by contrapositive. Assume n is odd, then n=2k+1 for some $k \in \mathbb{Z}$. So

$$(n+1)^2 - 1 = (2k+1+1)^2 - 1 = (2k+2)^2 - 1 = 4(k+1)^2 - 2 + 1 = 2(2(k+1)^2 - 1) + 1$$

which shows that $(n+1)^2 - 1$ is odd.

Exercise 6. Disprove the statement: If $n \in \{1, 2, 3, 4, 5\}$, then $2n^2 + 1$ is divisible by 3.

Proof. Let n=3. Then $2n^2+1=2(3)^2+1=19$ which is not divisible by 3. Thus n=3 is a counterexample.

Exercise 7. Prove that 200 cannot be written as the sum of an odd integer and two even integers.

Proof. Suppose that 200 can be written as the sum of an odd integer and two even integers. Suppose that 200 = a + b + c where a is odd and b and c are even. Then b + c is even since both b and c are even. Since the sum of an odd and even integer is odd, we have a + b + c is odd. Therefore 200 must be odd, a contradiction. Therefore 200 cannot be written as the sum of an odd integer and two even integers.

Exercise 8. Prove that if n is an odd integer, then 7n - 5 is even by (a) a direct proof, (b) a proof by contrapositive, and (c) a proof by contradiction. Proof.

(a) Suppose that n is odd, so n = 2k + 1 for some integer k. Then

$$7n - 5 = 7(2k + 1) - 5 = 14k + 7 - 5 = 14k + 2 = 2(7k + 1)$$

showing that 7n-5 is even.

- (b) Suppose that 7n-5 is odd. Then (7n-5)+5=7n must be even since it is the sum of two odd integers. Because 7 is odd, in order for 7n to be even, we must have that n is even. The desired result follows by taking the contrapositive.
- (c) Suppose that n is odd and 7n 5 is also odd. Since n is odd, 7n is also odd. Then (7n 5) 7n = -5 is even since it is the difference of two odd numbers. However -5 is not even, so we have our contradiction.

Exercise 9. Prove for every integer $n \ge 8$ that there exist nonnegative integers a and b such that n = 3a + 5b.

Proof. We divide this into 3 cases:

 $\underline{n=3k}$ In this case, let a=k and b=0, then $n=3k+5\cdot 0$, as desired.

 $\underline{n=3k+1}$ In this case, we must have $n\geq 10$, so $k\geq 3$. Then

$$n = 3k + 1 = 3(k - 3) + 9 + 1 = 3(k - 3) + 5 \cdot 2$$

so a = k - 3 and b = 2 are the desired nonnegative integers.

 $\underline{n=3k+2}$ In this case, we must have $n\geq 8$, so $k\geq 2$. Then

$$n = 3k + 1 = 3(k - 1) + 3 + 2 = 3(k - 1) + 5 \cdot 1$$

so a = k - 1 and b = 1 are the desired nonnegative integers.

Exercise 10. Disprove the statement: There is an integer n such that $n^4 + n^3 + n^2 + n$ is odd.

Proof. If n is even, then n, n^2 , n^3 , and n^4 are all even, so $n^4 + n^3 + n^2 + n$ is even. If n is odd, n, n^2 , n^3 , and n^4 are all odd. Since the sum of two odd integers is even, and we are adding an even number of terms, all of which are odd, the sum $n^4 + n^3 + n^2 + n$ is even. Therefore the statement is false.